

2022 Annual Drinking Water Quality Report, Consumer Confidence Report (CCR) Annual Water Quality Report for the period of: January 1 to December 31, 2022

Public Water System Name: City of Quitman

Public Water System ID Number: TX2500003

This report is intended to provide you with important information about your drinking water and the efforts made by this water system to provide safe drinking water.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

SPECIAL NOTICE:

The source of drinking water used by the CITY OF QUITMAN is Surface Water from Lake Fork Reservoir.

For more information regarding this report or this water system contact the system director: Dee Gilbreath, Water Utilities Director; (903) 763-2223 PO Box 1855, Quitman, TX 75783 utilities@quitmantx.org

Este reporte incluye información sobre el agua para tomar. Para asistencia en español, favor de llamar al teléfono (903) 763-2223

Required Language for ALL Community Public Water Systems

Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their healthcare providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800) 426-4791.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Information on Sources of Water:

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include Microbial contaminants, such as viruses and bacteria which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, and farming. Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses. Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems. Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

WATER LOSS:

In the water loss audit submitted to the Texas Water Development Board for the time period of Jan-Dec 2015 our system lost an estimated 4,733,820 gallons of water. If you have any questions about the water loss audit, please call (903) 763-2223.

Information about Secondary Contaminants

Many constituents (such as calcium, sodium, or iron) which are often found in drinking water, can cause taste, color and odor problems. The taste and odor constituents are called secondary constituents and are regulated by the State of Texas, not the EPA. These constituents are not causes for health concern. Therefore, secondaries are not required to be reported in this document, but they may greatly affect the appearance and taste of your water.

Information about Source Water Assessments

The TCEQ completed an assessment of our source water and results indicate that some of our sources are susceptible to certain contaminants. The Sampling requirements for your water system are based on this susceptibility and previous sample data. Any detections of these contaminants may be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at our system contact Dee Gilbreath. The information contained in the assessment allows us to focus on source water protection strategies. For more information about your sources of water, please refer to the Source Water Assessment Viewer available at the following URL:

http://gis3.tceq.state.tx.us/swav/Controller/index.jsp?wtrsrc=

Further details about sources and source water assessments are available in Drinking Water Watch at the following URL: http://dww.tceq.texas.gov/DWW/

<u>PUBLIC PARTICIPATION OPPORTUNITIES:</u> Date/Time: 3rd Thursday @ 6:00pm Monthly (generally); Location: Quitman City Library, Meeting room, 202 E. Goode St., Quitman, TX 75783. To learn more about future public meetings (concerning your drinking water), or to request to schedule one, please contact the system director. Phone number (903) 763-2223.

<u>DEFINITIONS:</u> The tables on the reverse page contain scientific terms and measures, some of which may require explanation.

Maximum Contaminant Level Goal or MCLG; The level of contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Residual Disinfectant Level Goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Maximum Residual Disinfectant Level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Avg: Regulatory compliance with some MCLs, are based on running annual average of monthly samples.

ppm: milligrams per liter or parts per million or 1oz. in 7,350 gallons of water.

ppb: Micrograms per liter or parts per billion or 1oz. in 7,350,000 gallons of water.

(a measure of asbestos) NTU: nephelometric turbidity units (a measure of turbidity)

pCi/L: picocuries per liter (a measure of radioactivity) ppt: parts per trillion, or nanograms per liter (ng/L)

mrem: millirems per year (a measure of radiation absorbed by the body)

Treatment Technique or TT: A required process intended to reduce the level of a contaminant in drinking water.

ppq: Parts per quadrillion, or picograms per liter (pg/L)

Level T Assessment ND: Non-Detect

WATER QUALITY TEST RESULTS

REGULATED CONTAMINANTS:

Disinfectants and Disinfection By-	Collection Date	Highest Level	Range of Levels	MCLG	MCL	Units	Violation	Likely Source of Contamination
products		Detected	Detected					
Haloacetic Acids	2022	46.0	30.7 – 48.7	No goal	60	ppb	N	By product of drinking
(HAAs)*				for total				water chlorination
Total Trihalomethanes	2022	57.0	43.1 – 69.5	No goal	80	ppb	N	By product of drinking
(TThm)*				for total				water chlorination

*Not all sample results may have been used for calculating the Highest Level Detected because some results may be part of an evaluation to determine where compliance sampling should occur in the future.

	to determine where compliance sampling should occur in the future.									
Inorganic	Collection	Highest	Range of	MCLG	MCL	Units	Violation	Likely Source of		
Contaminants	Date	Level	Levels					Contamination		
		Detected	Detected							
Barium	2022	0.054	0.054-	2.0	2.0	ppm	N	Discharge of drilling		
			0.054					wastes; Discharge from		
								metal refineries;		
								Erosion of natural		
								Deposits		
Fluoride	2022	0.0471	0.0471-	4.0	4.0	ppm	N	Erosion of natural		
			0.0471					deposits; Water additive		
								which promotes strong		
								teeth; Discharge from		
								fertilizer and aluminum		
								factories		
Nitrate	2022	0.18	0.18-0.18	10	10	ppm	N	Runoff from fertilizer		
[measured as Nitrogen]								use; Leaching from		
								septic tanks, sewage;		
								Erosion of natural		
								deposits		

Nitrate Advisory – Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant, you should ask advice from your healthcare provider.

Coliform Bacteria:

MCLG	Total Coliform MCL	Highest No. of Positive	Fecal Coliform of E Coli MCL	Total No. of (+) E. Coli or Fecal Coliform Samples	Violation	Likely Source of Contamination
0	One (1) positive	There were no TCR	n/a	0	N	Naturally present in
	monthly sample	detections for this				the environment
		system in this period				

Metallic	Year	The 90 th	# of Sites	Action	MCLG	Units	Likely Source of
Contaminant		Percentile	Over Action	Level (AL)			Contamination
			Level				
Lead	06/23/22	No detect	0	15	0	ppb	Corrosion of household plumbing systems; erosion of natural deposits
Copper	06/23/22	0.062	0	1.3	1.3	ppm	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives.

Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Beta/photon emitters	2021	5.1	5.1-5.1	0	50	pCi/L	N	Decay of natural and man- made deposits

Other Contaminants:

Turbidity	Limit (Treatment Technique)	Level Detected	Violation	Likely Source of Contamination
Highest Single Measurement	1 NTU	0.27	N	Soil Runoff
Lowest Monthly % Meeting Limit	0.3 NTU	100%	N	Soil Runoff

Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration.

Total Organic	Year	AVG Level	MIN Level	MAX Level	UOM	Likely Source of
Carbon						Contamination
Source Water	2022	5.68	5.10	6.45	ppm	Naturally present in the environment
Drinking Water	2022	3.08	2.77	3.58	ppm	Naturally present in the environment
Removal Ratio	2022	1.02%	0.95%	1.08%	Na	Na

The percentage of Total Organic Carbon (TOC) removal was measured each month and the system met all TOC removal requirements set, unless a TOC violation is noted in the violations section. *Removal Ratio is the percent of TOC removed by the treatment process divided by the percent of TOC required by the TCEQ to be removed.

Total organic carbon (TOC) has no health effects. The disinfectant can combine with TOC to form disinfection byproducts. Disinfection is necessary to ensure that water does not have unacceptable levels of pathogens. By-products of disinfection include trihalomethanes (THMs) & haloacetic acids (HAA) which are reported elsewhere in this report.

Systems must complete and submit disinfection data on the Surface Water Monthly Operation Report (SWMOR). On the CCR report, the system must provide disinfection type, minimum, maximum, and average level.

MRDL	Date	AVG Level	MIN Level	MAX Level	MRDL	MRDLG	UM	Source of Chemical
Chloramines	2022	2.95	1.3	3.9	4.0	<4.0	ppm	Disinfectant used to control microbes

Synthetic organic contaminants including pesticides and herbicides	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Atrazine	2022	< 0.1	0-0.1	3	3	ppb	N	Runoff from herbicide used on row crops.